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ABSTRACT
Recent advancements in automatic evaluation have made
significant progress, yet evaluating learner-created compu-
tational artifacts such as project-based code remains chal-
lenging. This study investigates the capability of GPT-
4, a state-of-the-art Large Language Model (LLM), in as-
sessing learner-created computational artifacts. Specifically,
we analyze the source code of 75 chatbots predominantly
built by middle school learners. We compare four LLM
prompting strategies ranging from example-based to rubric-
informed approaches. The experimental results indicate that
the LLM-based evaluation module achieves substantial agree-
ment (Cohen’s weighted κ = 0.797) with human evaluators
in two of five artifact dimensions, moderate agreement in
one, and fair agreement in the remaining two dimensions.
We analyze the trade-offs between different LLM prompting
strategies through qualitative error analysis. The findings
demonstrate the potential of LLMs for automatically evalu-
ating project-based, open-ended computational artifacts.
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1. INTRODUCTION AND RELATED WORK
Project-based learning is prevalent in STEM education and,
more recently, in artificial intelligence (AI) education [25,
14]. This approach engages learners in an open-ended pro-
cess of designing and developing applications [9, 11]. Project-
based learning has demonstrated many advantages, such as
increased engagement [14] and a deeper understanding of
complex concepts [13, 10]. The ability to design and con-
struct novel artifacts represents the pinnacle of cognitive

achievement [2]. These learner-created projects are often
crucial for evaluating their learning progress, serving as key
tools for teachers to assess and offer constructive feedback
[35].

A major challenge in project-based learning is evaluating
learner projects and providing timely feedback. Traditional
assessments often require domain experts to manually score
the project against a rubric [10, 20], which can be time-
consuming and resource-intensive. There is a growing inter-
est in automating this process to enhance scalability. How-
ever, existing automatic computational artifact evaluation
methods have several limitations. For instance, some rely
on testing the outcome of student programs with predefined
test cases or unit tests [32], which offer limited feedback to
learners. Others compare the structural similarity of student
code to expert solutions [24], but this approach is limited to
sufficiently simple tasks with a set of solutions that can be
tractably defined. While recent data-driven approaches aim
to assess more complex projects [27, 4, 34, 28], these ap-
proaches usually require large datasets to train the model,
which can be challenging to obtain in educational settings
that are typically resource-constrained.

The rapid development of large language models (LLMs)
and their use in education suggest promising directions for
computational artifact evaluation. LLMs have performed
well across many disciplines and tasks, such as grading short
answers [6, 36] and evaluating essays [19, 21]. Yet, the po-
tential of LLMs in assessing more technical and creative as-
pects of computational artifacts remains unexplored. This
presents a notable research gap, particularly in understand-
ing the LLMs’ performance on analyzing learner-created ar-
tifacts and the trade-offs between different prompting strate-
gies to improve automated assessment methods.

This study investigates the capability of GPT-4, a state-
of-the-art LLM at the time of this research, in assessing
learner-created computational artifacts. Specifically, we an-
alyze the source code of 75 chatbot programs created mainly
by middle school learners. Engaging young learners in build-
ing chatbots can foster AI learning and enhance attitudes in
computing-related careers [30]. However, evaluating these



learner-created chatbots presents significant challenges as it
requires an understanding of both design and technical im-
plementation of the chatbot and the logical flow of conver-
sations.

A key aspect in chatbot development is the concept of in-
tent, which represents the purpose or the goal behind a chat-
bot user’s message, such as “seek music recommendations.”
Our analysis focuses on five artifact dimensions critical to
chatbot evaluation: 1) Greet Intent, triggered at the conver-
sation’s onset with a greeting such as “Hi”; 2) Default Fall-
back Intent, triggered when the chatbot cannot confidently
match a user input to known intents, responding with“Sorry,
I didn’t get that. Can you say that again?”); 3) Follow-up
Intents, intents that maintain context from previous intent
to facilitate multi-turn conversation; 4) Training Phrases,
list of example user utterances that train the AI chatbot
to recognize intents; and 5) Responses, the specific replies
given by the chatbot once an intent is recognized. For exam-
ple, for the intent “seeking music recommendations,” train-
ing phrases could include “Can you recommend me a song?”
or “What music do you like?” An example response could
be “Sure, here is a classic one: Fireworks by Taylor Swift.”

To automatically assess the learner-created chatbots, our
study examines four LLM prompting strategies: zero-shot
without a rubric, zero-shot with a rubric, few-shot without
a rubric, and few-shot with a rubric1. We investigate the
following research questions (RQs):

• RQ1: How do LLMs perform in assessing different as-
pects of computational artifacts created by learners?

• RQ2: What are the trade-offs among different prompt-
ing strategies for LLMs to automatically evaluate learner-
created computational artifacts?

This paper makes the following contributions:

1. An examination of GPT-4’s performance on evaluat-
ing learner-created computational artifacts, highlight-
ing its effectiveness in evaluating isolated artifact com-
ponents.

2. An analysis of the trade-offs between rubric-based and
example-based prompting strategies, showing that few-
shot learning with contextual examples improves LLMs’
grading accuracy.

3. An exploration of LLMs’ limitations when grading com-
plex, interconnected components in computational ar-
tifacts.

2. STUDY CONTEXT
This study analyzes the chatbot artifacts created in a learn-
ing environment called AMBY (“AI Made By You”). AMBY
(Figure 1) is a graphical interface designed for middle school-
aged learners to create conversational agents without pro-
gramming [31]. AMBY was utilized in three middle school
AI summer camps across two years in the southeast United
States, focusing on computer science and AI learning [30,

1Zero-shot learning involves the model performs tasks with-
out prior examples. Few-shot learning provides the model
with a few examples to guide its outputs.

Figure 1: AMBY development environment for learners to
create chatbots.

12]. During the summer camp, learners designed the chat-
bots to interact with target users and solve problems, such
as introducing animal facts and offering movie recommen-
dations.

Data. The dataset contains 75 chatbots, with 66 created
by middle school learners (average age 12.7) during summer
camp and 9 by undergraduate learners in a pre-camp work-
shop. It comprises the project source files of these learner-
created chatbots, each a text file containing metadata such
as intents, training phrases, and responses in structured nat-
ural language format.

Table 1: Chatbot artifact evaluation rubric. Each dimension
was rated on a 1-4 scale.

Artifact Dimen-
sions

Statement for Score of 3 (Meets Expec-
tations)

Greet intent At least one customized greet response
demonstrating its purpose. May not set
exact user expectations.

Default fallback
intent

At least one customized default fall-
back response that can redirect the
users.

Follow-up in-
tents

Multiple logical follow-up intents. Each
follow-up intent is related to its parent
intent mostly logically and can be trig-
gered properly based on the responses
from their parent intents.

Training
phrases

Most training phrases are ample, cohe-
sive, and varied within the intent.

Responses At least one response is of appropri-
ate length, logical, conversational, and
mostly free from grammatical errors.

Rubric Development. To ensure systematic evaluation on
learner’s chatbots, we developed a rubric based on the camp’s



AI learning objectives and existing dialogue system eval-
uation frameworks [33]. The original rubric includes ten
dimensions with a grading scale of 1-4. The Quadratic
Weighted Cohen’s Kappa between two human graders across
all rubric dimensions is 0.82, indicating substantial inter-
rater reliability [18]. After resolving any discrepancies through
discussion, one grader proceeded to grade the remaining ar-
tifacts. In this paper, we focus on five dimensions pertinent
to dialogue system architecture. The evaluation criteria for
these five dimensions are in Table 1, with full scoring guide-
lines in Appendix B.

Figure 2: Prompt templates for four experiment conditions
(zero-shot-basic, zero-shot-rubric, few-shot-basic, few-shot-
rubric). Each prompt template might consist of Instruction,
Examples, and an unseen student artifact as Input. The for-
mat of {{artifact-specific information}} is dependent on the
dimension being evaluated.

3. LLM-BASED ARTIFACT ASSESSMENT
IMPLEMENTATION

In this section, we introduce the implementation procedure
of our LLM-based artifact assessment technique. First, we
defined our prompt template and prompting strategies. Then,
we preprocessed the dataset to extract features of the chat-
bot (e.g., intents, training phrases, responses). We used an

open-source framework, LLM4Qual [17], to manage the el-
ements of our prompt templates and conduct experiments.
We iteratively developed prompt templates and report the
evaluation results on the finalized prompt templates across
each rubric dimension.

3.1 Prompt Components and Strategies
The goal for this work is to explore the influence of the
prompting strategies on evaluation accuracy; thus we first
define our prompt template and tailor the components of
the prompt template for each prompting strategy.

Prompt Components. Our prompt template has three com-
ponents: Instruction, Examples (optional), and Input (Fig-
ure 2). Instruction sets out the evaluation task and contains
three possible subsections. The Instruction sets the evalu-
ation task with a task description, rubric statement speci-
fying criteria for the four-point scale, and output expecta-
tions. Examples are only included for few-shot conditions,
which are manually chosen exemplars corresponding to each
four-point scale of the rubric dimension. Each example in-
cludes the relevant component(s) from the learner-created
artifact, human-grader’s score, and their accompanying ra-
tionale text. The final component of the template is the
Input, which specifies the artifact component related to the
specific rubric dimension. For example, the Input for the
greet intent dimension would be the chatbot’s greet intent
responses, and for the training phrases dimension, it would
be the list of all intents’ training phrases and their respec-
tive counts. By limiting the Input to only relevant parts of
the artifact to the LLM, we ensure that the model is not
“distracted” by irrelevant information.

Prompting Strategies. Based on the complexity of prompt
Instruction and inclusion of Examples, we divide the prompt
template into four conditions: zero-shot basic (neither rubric
nor examples included), zero-shot-rubric (rubric included
but not examples), few-shot-basic (examples included but
not rubric), and few-shot-rubric (both rubric and examples
are included). A comparison between different prompting
strategies is shown in Figure 2.

3.2 Experimental Setup
Implementation. We utilized LLM4Qual [17], an open-source
framework that simplifies development of LLM-based proxy
annotators, to run our experiments. This framework em-
ploys Langchain2 in the backend and allows the specification
of rubric-wise prompt templates as well as few-shot exam-
ples through YAML files.

Input Feature Extraction. We developed Python scripts to
extract“input features”(artifact components) from the learner-
created chatbot artifacts. The input features contained the
chatbot name, top-level intents, follow-up intents, follow-up
intents count, training phrases, responses, training phrases
count, responses count, intent tree (a tree structure of intent
names), greet intent responses, and default fallback intent
responses. These features were selected to comprise the In-
put in the prompt template. Our motivation behind select-
ing only a subset of features for the prompt was to minimize
the number of input tokens, which, in turn, would minimize

2https://www.langchain.com/

https://www.langchain.com/


Table 2: Evaluation metrics of GPT4-generated scores with four prompting strategies and human-human agreement for five
artifact dimensions: greet intent, default fallback intent, follow-up intents, training phrases and responses. Evaluation matrics
include Spearman Correlation (ρ) and Quadratic Weighted Cohen’s Kappa (QWK). Bolded numbers indicate the best perfor-
mance for a metric.

Artifact Dimensions Metrics Human-
human

Human-GPT4

Zero-shot

Basic

Zero-shot

Rubric

Few-shot

Basic

Few-shot

Rubric

Greet intent
ρ 0.850 0.339 0.641 0.659 0.646

QWK 0.820 0.325 0.623 0.698 0.645

Default Fallback
intent

ρ 0.979 0.179 0.782 0.779 0.816

QWK 0.984 0.252 0.750 0.781 0.797

Follow-up intents
ρ 0.839 0.133 0.217 0.203 0.346

QWK 0.805 0.154 0.244 0.230 0.388

Training Phrases
ρ 0.819 0.231 0.406 0.464 0.551

QWK 0.808 0.168 0.325 0.409 0.479

Responses
ρ 0.750 0.150 0.127 0.235 0.143

QWK 0.715 0.083 0.105 0.158 0.094

the cost.

Data Splits. We split our dataset into three sets: train-
ing, validation, and test. However, unlike in a traditional
machine learning setup, our training set contained only a
hand-curated set of examples that were used for few-shot
prompting (specifically, four examples for each dimension).

Prompt Engineering. During the process of prompt engi-
neering, we iteratively refined our prompt templates over
the validation set until we began noticing diminishing re-
turns to the performance from further instruction modifica-
tions. We conducted our model runs over the test set only
after finalizing our prompt template and then reported our
final results.

Evaluation Metrics. To evaluate the LLM-generated scores,
we used Spearman correlation (ρ) and Weighted Cohen’s
Kappa (QWK) to compare with human grading. Both are
common agreement measurements for ordinal ratings be-
tween two grading parties [19, 21].

4. RESULTS
RQ1: How Do LLMs Perform in Assessing different Aspects
of Computational Artifacts? Table 2 presents the level of
agreement between human evaluations and GPT-4 across
each of our four prompting strategies. Notably, GPT-4
demonstrates high alignment with human assessments par-
ticularly for the greet intent and default fallback intent di-
mensions, with Quadratic Weighted Cohen’s Kappa scores
of 0.698 and 0.797 respectively, signaling substantial agree-
ment [18]. The Kappa score of 0.479 for the training phrases
reflects moderate agreement, while the highest agreement
score (among all four prompting strategies) for the follow-
up intents and responses dimensions are 0.388 and 0.158
respectively, indicating only slight to fair agreement [18].

RQ2: What Are the Tradeoffs among Different Prompting
Strategies? Examining the impact of different prompting
strategies reveals that the few-shot-rubric prompting strat-
egy outperforms the other strategies in evaluating default
fallback intent, follow-up intents, and training phrases. For
the other rubric dimensions, greet intent and responses, the
few-shot-basic (i.e., without rubric statement) setup is most
effective. The two zero-shot (i.e., without examples) condi-
tions, regardless of their rubric inclusion, do not perform as
well as the few-shot conditions. Particularly, the zero-shot-
basic approach consistently underperforms relative to other
strategies.

5. DISCUSSION
In this section, we explain why LLM-generated scores devi-
ate from human scores and why certain prompting strategies
outperform others through qualitative error analysis. We
contrast human expert rationales with those generated by
the LLM. This discussion will shed light on the strengths
and weaknesses of different prompting strategies and refine
LLM-based evaluation methods.

Our findings suggest that LLM evaluation performance is
task-dependent. We show that LLMs performs well in eval-
uating the greet intent and default fallback intent. These
dimensions deal with relatively isolated elements of a sin-
gular intent in an artifact. For these dimensions, including
1) a clearly articulated rubric statement, and 2) a few il-
lustrative examples results in high agreement with human
expert annotators. This finding is promising for real-world
applications such as using LMMs to provide immediate and
precise feedback to learners.

Notwithstanding this optimistic finding, the evaluation per-
formance reduces when evaluating follow-up intents, training
phrases and responses dimensions (as illustrated in Table 2).
This variability aligns with findings from other open-ended
text evaluations [8, 1, 36], where accuracy varied across top-



ics and types. For example, Zhang et al. [36] reported
that accuracy in grading mathematical short answers var-
ied across different question topics and types, with Kappa
scores ranging from 0.4 to 0.758. We attribute the low per-
formance in our study to the LLM’s requirements to 1) carry
out complex reasoning across multiple intents, and 2) infer
the logical progression of the conversation. These require-
ments present challenges even for human evaluators to reach
consensus (for example, the Kappa score for responses di-
mension between human-graders is only 0.715, lower than
other dimensions). We present two additional examples in
the Appendix A comparing the grades and rationals between
human and LLM evaluations.

For our second research question, our results confirm the ef-
fectiveness of contextual examples in the prompt templates
to improve LLM grading accuracy, which supports prior lit-
erature on few-shot learning [3, 26]. We observed that few-
shot prompting strategies generally surpass zero-shot strate-
gies, regardless of whether the prompt template contains the
rubric statement or not. This finding is promising for the
use of LLMs for the automated evaluation of computational
artifacts as it shows that even a few examples can improve
grading accuracy.

Table 3: Evaluation of the Greet Intent Response of a Chat-
bot: “Hey, bro! My name is M&P game reccs, and
you can ask me to start the quiz for my cracked game
quiz to give you a broad game rec, man!” Colored texts
highlight the main discrepancy between human and LLM-
generated rationales.

Evaluation Score Rationale

Human 4 It sets user expectations properly
because the main focus of the chatbot
is the quiz which gives the user game
recommendations.

GPT-4:
zero-shot-
basic

2 The greeting does introduce the bot
and its function, but the language used
is informal and may not be understood
by all users. The message could be
clearer and more professional.

GPT-4:
zero-shot-
rubric

3 The greet intent is customized and
introduces the chatbot as M&P game
reccs. It also demonstrates its purpose
by mentioning that it can start a quiz
for game recommendations. However,
it doesn’t set exact user expectations
or clearly direct the user for next steps.

GPT-4:
few-shot-
basic

3 The greeting is casual and friendly,
but it could be clearer in explaining
the bot’s purpose and how it can assist
the user.

GPT-4:
few-shot-
rubric

4 The greeting is customized, introduces
the bot, demonstrates its purpose, and
sets exact user expectations.

Additionally, our zero-shot prompting experiments highlight
that even without examples for few-shot prompting, a well-
designed rubric statement can greatly enhance grading ac-
curacy (see Table 2). This finding addresses the “cold-start”

problem where instructors initially lack clear exemplars for
each evaluation scale point [23].

We conduct a comparative analysis of the four prompting
strategies in their generated scores and rationales. Consider
the example of a “greet intent” (Table 3), where the ob-
jective is for learners to demonstrate the chatbot’s purpose
and establish proper user expectations. The human evalua-
tor grades this dimension as 4, noting the chatbot’s precise
setting of expectations for a game recommendation quiz.
Among the four LLM prompting strategies tested, only the
few-shot-with-rubric approach matches the human evalua-
tor’s score. The two strategies without a rubric penalize the
chatbot for its informal language. However, this informal
style, including slang and jargon common among the learn-
ers, reflects the learners’ personalities, making it suitable for
the greet intent where personal relevance is key. The strate-
gies that include rubric criteria tend to produce responses
more consistent with the evaluation criteria. However, the
rationale provided under the few-shot-rubric strategy in this
example merely echoes the rubric statement without dis-
cussing specifics about the artifact. This raises concerns
about the depth and relevance of feedback LLMs can offer to
learners based on their specific artifact. Studies suggest that
alternative prompting instructions (e.g., Chain-of-Thought
prompting [37]) can enhance the performance of LLMs in
complex tasks involving deeper reasoning [5].

6. CONCLUSION AND FUTURE WORK
Our study leverages GPT-4 to automatically evaluate com-
putational artifacts from AI education and provide feedback.
Examining different prompting strategies, we uncover the
potential and challenges of using LLMs for assessing learner-
created artifacts. These findings highlight the importance
of careful prompting for effective LLM utilization. This re-
search paves the way for integrating LLMs into educational
assessment, particularly in complex CS and AI pedagogy.

More broadly, there remain several critical roadblocks in the
way of complete adoption of LLMs for automated evalua-
tion of complex artifacts. These include the brittleness of
natural language prompts [16], issues of prompt calibration
pertaining to the order of few-shot examples [38], and lack of
guarantees about LLM performance on individual samples
beyond macro-level indicators. Robust solutions to such fun-
damental issues are needed to address stakeholder skepticism
of automated grading methods.

Our research suggests exploring additional prompting strate-
gies like Chain-of-Thought prompting [37] to improve grad-
ing performance. Second, although we evaluate the LLM’s
performance through agreement with expert human graders,
we do not yet assess learner’s responses on the LLM-generated
scores and rationales. Understanding how learners perceive
and trust the LLM’s feedback is crucial, as it informs what
kind of hints, feedback, or interactions might be most benefi-
cial [29, 15]. For dimensions where LLM grading is less effec-
tive, future work can explore human-in-the-loop approaches
to maintain reliability [22, 7].

Acknowledgements
This research was supported by the National Science Foun-
dation through grant DRL-2048480.



References
[1] M. Ariely, T. Nazaretsky, and G. Alexandron. Machine

learning and hebrew nlp for automated assessment of
open-ended questions in biology. International journal
of artificial intelligence in education, 33(1):1–34, 2023.

[2] P. Armstrong. Bloom’s taxonomy. vanderbilt university
center for teaching. retrieved from https://cft. vander-
bilt. edu/guides-sub-pages/blooms-taxonomy, 2010.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems,
33:1877–1901, 2020.

[4] Y. Dong, S. Marwan, P. Shabrina, T. Price, and
T. Barnes. Using student trace logs to determine mean-
ingful progress and struggle during programming prob-
lem solving. In Proceedings of International Conference
on Educational Data Mining. ERIC, 2021.

[5] G. Feng, B. Zhang, Y. Gu, H. Ye, D. He, and L. Wang.
Towards revealing the mystery behind chain of thought:
a theoretical perspective. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

[6] H. Funayama, Y. Asazuma, Y. Matsubayashi, T. Mizu-
moto, and K. Inui. Reducing the cost: Cross-prompt
pre-finetuning for short answer scoring. In Interna-
tional Conference on Artificial Intelligence in Educa-
tion, pages 78–89. Springer, 2023.

[7] H. Funayama, T. Sato, Y. Matsubayashi, T. Mizumoto,
J. Suzuki, and K. Inui. Balancing cost and quality: an
exploration of human-in-the-loop frameworks for auto-
mated short answer scoring. In International Confer-
ence on Artificial Intelligence in Education, pages 465–
476. Springer, 2022.

[8] R. Gao, H. E. Merzdorf, S. Anwar, M. C. Hipwell, and
A. Srinivasa. Automatic assessment of text-based re-
sponses in post-secondary education: A systematic re-
view. Computers and Education: Artificial Intelligence,
page 100206, 2024.

[9] M. M. Grant and R. M. Branch. Project-based learning
in a middle school: Tracing abilities through the arti-
facts of learning. Journal of Research on technology in
Education, 38(1):65–98, 2005.

[10] P. Guo, N. Saab, L. S. Post, and W. Admiraal. A
review of project-based learning in higher education:
Student outcomes and measures. International journal
of educational research, 102:101586, 2020.

[11] Z. Z. GUVEN. Project based learning: A constructive
way toward learner autonomy. International Journal
of Languages’ Education and Teaching, 2(3):182–193,
2014.

[12] G. A. Katuka, Y. Auguste, Y. Song, X. Tian, A. Ku-
mar, M. Celepkolu, K. E. Boyer, J. Barrett, M. Israel,
and T. McKlin. A summer camp experience to engage
middle school learners in ai through conversational app
development. In Proceedings of the 54th ACM Techni-
cal Symposium on Computer Science Education V. 1,
pages 813–819, 2023.

[13] J. H. L. Koh, S. C. Herring, and K. F. Hew. Project-
based learning and student knowledge construction dur-
ing asynchronous online discussion. The Internet and
Higher Education, 13(4):284–291, 2010.

[14] D. Kokotsaki, V. Menzies, and A. Wiggins. Project-
based learning: A review of the literature. Improving
schools, 19(3):267–277, 2016.

[15] H. Kumar, I. Musabirov, M. Reza, J. Shi,
A. Kuzminykh, J. J. Williams, and M. Liut. Im-
pact of guidance and interaction strategies for llm use
on learner performance and perception. arXiv preprint
arXiv:2310.13712, 2023.

[16] Y. Lu, M. Bartolo, A. Moore, S. Riedel, and P. Stene-
torp. Fantastically ordered prompts and where to find
them: Overcoming few-shot prompt order sensitivity.
arXiv preprint arXiv:2104.08786, 2021.

[17] A. Mannekote. LLM4Qual. https://github.com/

msamogh/llm4qual, Jan. 2024.

[18] M. L. McHugh. Interrater reliability: the kappa statis-
tic. Biochemia medica, 22(3):276–282, 2012.

[19] A. Mizumoto and M. Eguchi. Exploring the potential of
using an ai language model for automated essay scoring.
Research Methods in Applied Linguistics, 2(2):100050,
2023.

[20] C. Mouza, A. Marzocchi, Y.-C. Pan, and L. Pollock.
Development, implementation, and outcomes of an eq-
uitable computer science after-school program: Find-
ings from middle-school students. Journal of Research
on Technology in Education, 48(2):84–104, 2016.

[21] B. Naismith, P. Mulcaire, and J. Burstein. Automated
evaluation of written discourse coherence using gpt-4.
In Proceedings of the 18th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2023), pages 394–403, 2023.

[22] T. Phung, J. Cambronero, S. Gulwani, T. Kohn,
R. Majumdar, A. Singla, and G. Soares. Generat-
ing high-precision feedback for programming syntax
errors using large language models. arXiv preprint
arXiv:2302.04662, 2023.

[23] K. Pliakos, S.-H. Joo, J. Y. Park, F. Cornillie, C. Vens,
and W. Van den Noortgate. Integrating machine learn-
ing into item response theory for addressing the cold
start problem in adaptive learning systems. Computers
& Education, 137:91–103, 2019.

[24] T. Price, R. Zhi, and T. Barnes. Evaluation of a data-
driven feedback algorithm for open-ended program-
ming. In Proceedings of International Conference on
Educational Data Mining. ERIC, 2017.

[25] R. Pucher and M. Lehner. Project based learning in
computer science–a review of more than 500 projects.
Procedia-Social and Behavioral Sciences, 29:1561–1566,
2011.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

https://github.com/msamogh/llm4qual
https://github.com/msamogh/llm4qual


[27] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price.
More with less: Exploring how to use deep learning
effectively through semi-supervised learning for auto-
matic bug detection in student code. In Proceedings of
International Conference on Educational Data Mining,
2021.

[28] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In LAK21: 11th In-
ternational Learning Analytics and Knowledge Confer-
ence, pages 606–612, 2021.

[29] A. Shibani, R. Rajalakshmi, F. Mattins, S. Selvaraj,
and S. Knight. Visual representation of co-authorship
with gpt-3: Studying human-machine interaction for
effective writing. In Proceedings of International Con-
ference on Educational Data Mining. ERIC, 2023.

[30] Y. Song, G. A. Katuka, J. Barrett, X. Tian, A. Ku-
mar, T. McKlin, M. Celepkolu, K. E. Boyer, and M. Is-
rael. Ai made by youth: A conversational ai curricu-
lum for middle school summer camps. In Proceedings of
the Thirty-Seventh AAAI Conference on Artificial In-
telligence and Thirty-Fifth Innovative Applications of
Artificial Intelligence Conference and Thirteenth AAAI
Symposium on Educational Advances in Artificial Intel-
ligence, 2023.

[31] X. Tian, A. Kumar, C. E. Solomon, K. D. Calder, G. A.
Katuka, Y. Song, M. Celepkolu, L. Pezzullo, J. Bar-
rett, K. E. Boyer, et al. Amby: A development en-
vironment for youth to create conversational agents.
International Journal of Child-Computer Interaction,
38:100618, 2023.

[32] B. Vander Zanden and M. W. Berry. Improving auto-
matic code assessment. Journal of Computing Sciences
in Colleges, 29(2):162–168, 2013.

[33] M. Walker, C. Kamm, and D. Litman. Towards devel-
oping general models of usability with paradise. Natural
Language Engineering, 6(3-4):363–377, 2000.

[34] W. Wang, G. Fraser, T. Barnes, C. Martens, and
T. Price. Automated classification of visual, interac-
tive programs using execution traces. In Proceedings of
International Conference on Educational Data Mining,
pages 677–681, 2021.

[35] M. H. Wilkerson-Jerde. Construction, categorization,
and consensus: Student generated computational ar-
tifacts as a context for disciplinary reflection. Edu-
cational Technology Research and Development, 62:99–
121, 2014.

[36] M. Zhang, S. Baral, N. Heffernan, and A. Lan. Auto-
matic short math answer grading via in-context meta-
learning. In Proceedings of International Conference on
Educational Data Mining, pages 122–132, 2022.

[37] Z. Zhang, A. Zhang, M. Li, and A. Smola. Automatic
chain of thought prompting in large language models.
arXiv preprint arXiv:2210.03493, 2022.

[38] T. Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh.
Calibrate before use: Improving few-shot performance
of language models. (arXiv:2102.09690), June 2021.
arXiv:2102.09690 [cs].



APPENDIX
A. ADDITIONAL EXAMPLES OF COMPAR-

ISON BETWEEN HUMAN GRADER’S AND
LLM’S GRADES AND RATIONALES

Table 4: Comparison between human grader’s and LLM’s
rationales for evaluating the responses in a learner artifact.
Colored texts highlight the main discrepancy between human
and LLM-generated rationales (similarly for Table 5).

Evaluation Score Rationale

Human 3 Most contain one proper response that
is logical and conversational with
some conversational markers.
However, I cannot give a 4 because
some responses are extremely long.
For example, “Buckle Up! There are a
lot of Penalty Umpire Signals! There
are 11 signals in this division: Out,
Not Out, No Ball, Free Hit, Wide
Ball, Bouncer, DRS(Third Umpire),
Dead Ball, Short Run, Penalty Runs,
Revoke Decision, and Cancel Call.
Out: [.....]” This response contains
almost 200 words to describe the
different signals in a cricket ball. This
long utterance makes the chatbot talks
in monologue instead of engaging users
in a dialogue.

GPT-4:
few-shot-
rubric

4 The responses are abundant, logical,
and error-free. They contain hints to
keep the conversation going and utilize
conversational markers throughout the
intents when appropriate. For
example, after explaining the rules of
cricket, the AI suggests asking about
fun facts, famous players, types of no
balls, or umpire signals. This keeps
the conversation flowing and engages
the user. The responses are also of
appropriate length and are mostly free
from grammatical errors.

B. FULL DESCRIPTION OF CHATBOT AR-
TIFACT EVALUATION RUBRIC

Table 5: Comparison between human grader’s and LLM’s
rationales for evaluating the training phrases in a learner
artifact.

Evaluation Score Rationale

Human 4 The training phrases are in great
shape. It consistently contains more
than three (system required) training
phrases per intent, and has plenty of
linguistic variations among the phrases.
For example, some uses keywords,
while the others are mixed sentences.

GPT-4:
few-shot-
rubric

3 The training phrases are ample and
varied within the intent and also differ
from those in other intents. They
present variations in either syntactic
structure or lexicon choices. However,
they do not consistently capture edge
cases, which is why the score is not a
4.



Table 6: Full Description of Conversational AI Artifact Evaluation Rubric.

Categories Artifact Dimen-
sions

1. Little to no evidence of
approaching expectations

2. Approaching Expecta-
tions

3. Meets Expectations 4. Exceeds Expectations

Conversational design Follow up intents
No follow-up intent At least one follow-up intent

OR most follow-up intents
do not logically match with
its parent intent OR they are
unnecessary or repeated

Multiple logical follow-up in-
tents AND Each follow-up
intent is related to its parent
intent mostly logically

All follow-up intents are logi-
cally related to main intent, nu-
merous, and mutually exclusive

Conversational design Greet intent
No customized greet re-
sponse

At least one customized
greet intent, however the
purpose is not clear or ac-
tionable

At least one customized
greet intent demonstrating
its purpose. May not set ex-
act user expectations: (“Ask
me for song recommenda-
tions”, “hey im blah bot do
you need any assistance on
video games?” )

Effectively greet the user, intro-
duce the chatbot, and demon-
strate the purpose. AND Set
exact user expectations (e.g., “I
can talk about pop or hip hop
music”) or clearly directs the
user for next steps (e.g., “simply
state ‘quiz me on math”’)

Conversational design
Default fallback

intent
No customized fallback
response

The response is customized,
however it cannot not redi-
rect the users (e.g., “I didn’t
get that. Try it again.”)

The response is customized
and can redirect the users
(e.g., “I didn’t get that as
I’m still learning. I’m more
confident to talk about XYZ
instead.”)

The agent has multiple varied,
customized and meaningful re-
sponses that can redirect the
users

AI Development Training phrases
The amount of train-
ing phrases is limited
(less than system re-
quirement) OR Most of
training phrases are ran-
dom in the customized
intents

The amount of training
phrases meet the system re-
quirement, but the content
does not show enough lin-
guistic variations (syntacti-
cally and lexically) within
the intent or topic variations
across different intents

Most training phrases are
ample, cohesive and varied
within the intent; also differ
from those in other intents.
They present variations in
either syntactic structure or
lexicon choices

The project contains consis-
tently more varied training
phrases than what the sys-
tem requires, which can cap-
ture some edge cases. Training
phrases are given and they are
unique in both lexical and syn-
tactic structure

AI Development Responses
The responses are ran-
dom in most of the cus-
tomized intents

Most Responses (60%+) are
provided either too long or
too short, or lack of informa-
tion or contains grammatical
errors that impede user’s un-
derstanding If there are mul-
tiple responses, the content
is not consistent enough to
trigger similar user reactions
Example: “Bad Romance by
Lady Gaga” - not conversa-
tional

Most customized intents
contain at least one re-
sponse that is in proper
length, logical, mostly
free of grammatical errors,
mostly mimic/display natu-
ral and conversational, may
include some conversational
markers.

Intents contain multiple logical,
error-free responses OR The re-
sponses contain hints to keep
the conversation going (e.g.,
“Alligators are dangerous ani-
mals. . . Now, do you want to
learn about other animals?) OR
Utilize the conversational mark-
ers throughout the customized
intents when appropriate
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