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Instructional Design for Optimizing Learning Outcomes

❏ Three primary types of cognitive load (Sweller et al. 1998 [4])

❏ Intrinsic load

❏ Inherent difficulty of the material 

❏ May vary based on a student’s prior knowledge

❏ Extraneous load

❏ How information is presented and the ease with which a student comprehends it

❏ Germane load

❏ Integrating new information and how we process it into long-term memory
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Instructional design for optimizing learning outcomes (Cont.)

❏ Worked examples can save students time without reducing their learning ([6])

❏ Nievelstein et al. found that worked examples may not be beneficial for students with high prior 

knowledge when problems are structured [7].

❏ Worked examples often lead to passive engagement by not clearly explaining the reasoning 

behind each step [3].

❏ In contrast, unstructured problem solving can place high cognitive demands on students as 

they try to construct multi-step proofs [4].
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Parsons Problems 

❏ Parsons problems have emerged as a promising scaffold for teaching structured problem 

solving.

❏ Enable learners to reconstruct jumbled proof steps into valid solutions while reducing cognitive load [1].

❏ In programming education, Parsons problems have been extensively explored and found to 

improve students’ code writing abilities [10, 11 , 9 , 12].
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Parsons Problems in Logic

❏ Shabrina et al. demonstrated that data-driven, subgoal-oriented Parsons problems can 

enhance students’ subgoaling skills in solving propositional logic proofs [2]. 

❏ They also found that students struggle with Parsons problems 

❏ when they first encounter this type of structured problem, or 

❏ when the connections among different parts of the problem are complex.
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Parsons Problem

6

Frequent approaches were decomposed using data-driven subgoals and presented as chunks.

Experts Formalized the 
Structure of Chunk 
Explanations:
1. What the chunk derives.
2. How it is derived.
3. Why it is derived.



Improving Learning with Guided Parsons Problems

❏ Add step-specific hints to address the “rationale gap” of worked examples [16]

❏ Add self-explanations to understand the impact on students’ perception of problem subgoals 

❏ Designed to maintain 
❏ low intrinsic 
❏ while facilitating active problem solving.
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Research Questions (RQs)

RQ1: What is the impact of Guided Parsons problems (GPP) on student performance and learning 
outcome?

RQ2: To what extent does student proficiency level moderate the relationship between GPPs and 
student learning outcomes?

RQ3: What common themes emerge from students’ self-explanations on their learning experiences 
with GPPs?
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Context: DT, The Intelligent Logic Tutor
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Figure 1: Full Interface of Deep Thought with Student Workspace (left), Rules (middle), Instructions (top-right)

9

Given premises

Conclusion

Rule window

9



Problem Organization
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7 levels

❏ Level 1

❏

❏ Level 2-6

❏

❏ One level-end

❏ Level 7

❏

10
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Figure 2: Problems in Different Levels
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Problem Type: Problem-solving (PS)
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➔ Clicking one or two existing 
statements or nodes, a rule 
button, and entering the new 
derived statement 

Once a step is verified by
the tutor, the new node appears. 

Figure 3: PS Interface
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Problem Type: Worked Example (WE)
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➔ The tutor shows one step at a 
time, consisting of adding a new 
node to the screen with its 
justification

Students press Next/Previous to 
progress between steps.

Figure 4: WE Interface
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Problem Type: Guided Parsons Problem (GPP)
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➔ Each GPP provides students with 
all the statement nodes needed 
to complete a proof.

Students must add a few 
justifications to connect all the 
nodes to one another with 
missing edges for rules.

GPPs guide students to justify 
each unjustified node by
specifying the rule used to 
derive it.

Figure 5: GPP Interface
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Experimental Conditions

76 students in an undergraduate discrete mathematics course in Spring 2024

❏ Control:  Random PS or WE:

❏ Training problems were randomly Problem Solving or Worked Examples 

❏ GPP:  Random PS or GPP: 

❏ Training problems were Problem Solving or Guided Parsons Problems 
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Research Questions (RQs)

RQ1: What is the impact of Guided Parsons problems (GPP) on student performance and learning 

outcome?

RQ2: To what extent does student proficiency level moderate the relationship between GPPs and 

student learning outcomes?

RQ3: What common themes emerge from students’ self-explanations on their learning experiences 

with GPPs?
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Performance Metrics

❏ Problem scores are a weighted sum of three metrics in the range [0, 1] 

a. Solution length 

b. Problem-solving time

c. Accuracy of rule application

❏ Normalized learning gain (NLG) and learning efficiency (LE)

July 20, 2025 Sutapa Dey Tithi Research Methods 16
16



Performance Metrics: NLG and LE

(Shabrina et al. 2023 [24])

where, NLG is scaled between 0 and 1, and the tutor completion time includes the total time students 

spent on the tutor (pretest, training, and posttest problems)

July 20, 2025 Sutapa Dey Tithi Research Methods 17
17



RQ1: No differences in Normalized Learning Gains
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Group (N) Pre Post NLG % Students with 
(+) NLG

Control (30) 62.8 (18.7) 70.4 (14.4) 0.26 (0.45) 73%

GPP (46) 63.8 (18.1) 72.6 (8.2) 0.27 (0.44) 78%

Table 1: Problem Score and Normalized Learning Gain (NLG) across the Two Training Groups.
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No significant differences in NLG, but a higher percentage of students with positive NLG scores

Note: NLG is often negative in this tutor because of posttest difficulty



RQ1: Rule accuracy improved by Guided Parsons Problems
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Test Control (30) GPP (46) Test Results

Level-End Tests 59.4 (24.6) 68.7 (20.2)* 𝑝 = .002

Posttests 72.7 (22.1) 79.8 (17.2)* 𝑝 = .003

Table 2: Rule accuracy (Mean (SD)) across two conditions in training level-end test and posttest problems. 
[Note: Blue* indicates a significant difference using Mann-Whitney U]
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Results showed that students in the GPP condition had higher rule accuracy
Than students in the control condition



RQ1: Time in hours in each section of the tutor
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Time Control (30) GPP (46)

Training 0.81 (0.37)* 1.52 (0.77)

Level-End Test 1.87 (1.43) 1.50 (0.92)

Posttest 1.02 (0.96) 0.91 (0.59)

Total Tutor 4.71 (2.31) 4.75 (1.76)

Table 3: Comparison of Total Time to Complete the Tutor across Two Training Conditions. 
[Note: Blue* indicates a significant difference.]
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RQ1: Avg. Incorrect Steps in Level-End Test & Posttest
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Test Control (30 students) GPP (46 students) p-value

Level-End Tests 37.4 steps 19.6 𝑝 < .001

Posttests 16.4 8.4 𝑝 = .06



RQ2: Impact of GPP - Moderation Analysis on Posttest cat. by Pretest Score 
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Metric Test Control (High) GPP (High) p Control (Low) GPP (Low) p

Rule Accuracy

Pretest 67.8 (28.4) 60.1 (29.2) 0.22 39.9 (20.4) 42.3 (20.0) 0.23

Level-End 67.2 (23.0) 69.2 (20.6) 0.56 51.6 (23.5) 68.3 (19.9)* < 0.001

Posttest 78.5 (21.5) 80.5 (16.9) 0.68 66.7 (21.2) 79.1 (17.4)* < 0.001

Step Count

Pretest 5.2 (1.6) 5.0 (1.3) 0.70 6.9 (2.5) 7.3 (3.0) 0.85

Level-End 11.1 (4.3) 9.6 (3.6)* 0.02 9.7 (3.6)* 11.6 (5.8) 0.03

Posttest 8.1 (3.2) 8.2 (3.3) 0.81 8.6 (3.8) 9.6 (4.6) 0.14

Problem Time 
(minutes)

Pretest 16.2 (17.2) 12.4 (16.2) 0.74 38.3 (17.4) 31.1 (15.1) 0.60

Level-End 19.8 (14.0) 18.9 (12.5) 0.38 24.3 (13.2) 20.9 (13.5) 0.20

Posttest 9.3 (8.7) 6.2 (9.2)* 0.01 13.6 (12.6) 10.1 (16.7) 0.58
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Takeaways (RQ1 & RQ2) 

❏ By maintaining a balance between structured scaffolding and student autonomy, GPPs 
address critical gaps in previously researched logic PPs.

❏ This approach proved particularly beneficial for students with low prior knowledge, who 
demonstrated significant improvements in rule application accuracy.

❏ High prior knowledge students benefited from the GPP to improve their efficiency, as 
evidenced by the reduced number of steps & post-test time.

July 20, 2025 Sutapa Dey Tithi Discussion 23
23



RQ3: GPP Self-explanation Thematic Analysis methods

For students in the GPP group, we collected students’ self-explanation responses after solving each 

GPP problem (e.g., “How did the subgoals (𝐺 ∧ ¬𝐻 ), 𝐽 help you derive the conclusion?”).

We conducted a thematic analysis on 326 unique student explanations from 46 students in GPP group 

to determine whether and how students were learning about subgoals through GPPs (RQ3). 

The themes were derived through an inductive coding process [20] following established thematic 

analysis methodology [21, 22].
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RQ3: Five key GPP Self-explanation Themes 
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Theme Description Student Quote

Task 
Decomposition

GPPs helped break down logic problems into manageable 
steps and subgoals.

"They broke down the problem into more understandable 
smaller problems... like puzzle pieces."

Rule 
Understanding

Step-specific hints improved understanding of logic rules 
and when to apply them.

"The hints were useful... something I'll keep in mind in 
future."

Reduced 
Difficulty

GPPs reduced cognitive load by showing a solution skeleton 
and encouraging task planning.

"It allowed me to work on simpler goals and not get 
distracted on long mistakes."

Backward 
Reasoning

Though students typically use forward reasoning, GPPs 
encouraged effective backward chaining.

"They provided obvious stepping stones to move backward 
through the logic."

Difficulty A minority found GPPs disrupted their natural 
problem-solving approach.

"It made the problem harder by disrupting my own way of 
working through the problem..."
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Takeaways (RQ3) 

❏ Three prominent themes, Task Decomposition, Rule Understanding, and Reduced Difficulty, 

emphasize how the subgoals and step-specific hints made the proofs more manageable, 

potentially reducing cognitive load. 

❏ Conversely, several students perceived the structured nature of the proof as disruptive to their 

own reasoning processes. These results suggest that GPPs could be further enhanced by 

making them adaptive to individual student skill levels, which has been shown to be effective 

for programming [24]. 
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Limitations and Future Work

❏ A confounding variable in this study could be the lack of self-explanation prompts 

in the control group. In the future, this can be addressed by asking what aspects of 

the worked examples students found helpful when solving problems. 

❏ Future research should explore a more adaptive implementation of GPPs to 

dynamically adjust the amount of scaffolding according to learners’ mastery levels 

and metacognitive needs.
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Thank you!
Any questions/feedback?

Sutapa Dey Tithi - stithi@ncsu.edu

Dr. Xiaoyi Tian - xtian9@ncsu.edu 

Dr. Min Chi - mchi@ncsu.edu 

Dr. Tiffany Barnes - tmbarnes@ncsu.edu 
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